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Excitation of shear layer instability in �ow past a cylinder
at low Reynolds number
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SUMMARY

The instability of the separated shear layer for �ow past a cylinder, in two dimensions, is investigated
for low Reynolds numbers (Re6 350). The line of symmetry, downstream of the cylinder, in the
wake is forced to be a streamline. This hypothetical situation allows slip of velocity along the wake
centreline but prevents any �ow normal to it. With this arrangement the �ow is completely stable for
Re6 250. It suppresses the primary instability of the wake that is responsible for the von Karman
vortex shedding. Unlike the conventional splitter plate such an arrangement does not have a wake of
its own. At Re=300 and above the wake instability and the shear layer instability are observed. The
�uctuations due to the instabilities are intermittent in nature. The shear layer frequency is smaller than
the frequency of the von Karman vortex shedding for the regular �ow past a cylinder. It is also found
that �ow past half a cylinder, with symmetry conditions at the wake centreline, at Re=300 is stable.
However, when a secondary cylinder with one-�fth the diameter of the half-cylinder is placed close
to it, the vortex shedding from the smaller cylinder again leads to instability of the separated shear
layer of the half-cylinder. This suggests that although the separated shear layer is stable, at such low
Re, the shear layer instability can be excited by some other disturbances. It is found that even at
such low Re, the normalized shear layer frequency follows the Re0:67 power law. All the computations
have been carried out using a stabilized �nite element formulation. Copyright ? 2005 John Wiley &
Sons, Ltd.

KEY WORDS: vortex shedding; cylinder; wake bubble; suppression; secondary cylinder; shear layer
instability

1. INTRODUCTION

The �ow past a cylinder is associated with various instabilities [1, 2]. At Re∼ 47 the
primary instability of the wake results in von Karman vortex shedding. The �ow remains
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two-dimensional at low Re while three-dimensional transitions in the wake are observed
at Re larger than, approximately, 190 [1]. Instability of the separated shear layer due to
the Kelvin–Helmholtz mechanism is observed at higher Re. Various values of the critical
Reynolds number (Rec), at which this instability is �rst observed, have been reported in the
literature. Gerrard [3] observed the shear layer instability at Re=350 and higher. Prasad and
Williamson [4] found that the end-conditions determine the Rec; it is ∼1200 for parallel shed-
ding conditions and signi�cantly higher (∼2600) for the end-conditions that result in oblique
shedding. Unal and Rockwell [5] have reported that they are unable to observe shear layer
transition waves for Re¡1900 using �ow visualization. Bloor [6] observed the shear layer
instability for Re larger than 1300. The observation of the transition waves for Re∼ 350 by
Gerrard [3] remains unexplained to this date.
It was observed by Prasad and Williamson [4] that the shear layer �uctuations are inter-

mittent and become stronger with increase in Re. They also presented an explanation for the
intermittent behaviour of these �uctuations. The cause is the the streamwise movement of
the point in the shear layer at which the �uctuations develop rapidly. Williamson [1] has
presented an explanation as to why the shear layer vortices are not observed for Re¡1200.
The present work is an e�ort to investigate the possibility of observing the shear layer

�uctuations at low Re. At low Re, the shear layer transition waves are very weak and the
�ow is dominated by the primary instability of the wake. A computational experiment is
designed that results in suppression=weakening of the primary wake instability but does not
annihilate the instability of the separated shear layer(s). This may allow one to observe the
shear layer vortices even at low Re. It was shown by us in an earlier work [7] that a ‘slip’
splitter plate occupying a certain portion of the centreline downstream of the cylinder results
in complete suppression of vortex shedding for low Re. The component of velocity normal
to the ‘slip’ plate is zero but that along the plate remains unaltered. For Re=100 �ow a slip
plate of length 2D (D is the diameter of the cylinder) whose leading edge is located at 2:68D
from the centre of the cylinder is su�cient to completely suppress the vortex shedding. The
location and length of the slip plate required to suppress the shedding is a function of the
Reynolds number.
In the present work, computations are carried out for �ow past a cylinder at low Reynolds

numbers (506Re6 350). First, the steady-state solutions and the fully developed unsteady
solutions, following an impulsive start, are computed. These results are compared with those
available in the literature. Computations are also carried out for the case where the centreline,
in the wake downstream of the cylinder, is forced to be a streamline. In this scenario the �ow
for Re=250 and lower remains stable. However, the �ow at Re=300 becomes unstable.
Both, the primary instability of the wake and the instability of the separated shear layer are
observed. It is well known that the Re=300 �ow past a cylinder is associated with three-
dimensional instabilities. However, the objective of the present work is to study the instability
of the separated shear layer. This instability, along the span of the cylinder, is by and large
two-dimensional [1, 8]. Results are also presented for the Re=350 �ow. The data from the
simulations for Re=300 and 350 is utilized to see if the normalized shear layer frequency
follows the power law, Re0:67, as shown by Prasad and Williamson [4] for higher Re �ows.
While a conventional splitter plate interferes with the �ow even for the unperturbed basic

�ow, forcing the centreline to be a streamline does not alter the basic steady-state �ow.
The steady-state �ows for the two cases, with and without forcing the centreline to be a
streamline, are identical. The e�ect of a conventional splitter plate has been investigated by
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other researchers in the past. Roshko [9] observed that a splitter plate of chord 5D results
in suppression of shedding. A plate of chord 1D does not inhibit formation of vortices but
changes the shedding frequency slightly. Unal and Rockwell [5, 10] carried out a similar study.
They found that by placing the plate appropriately, compared to a cylinder with no control, it
is possible to more than double the vortex formation length. For low Re the vortex shedding
is completely eliminated while for higher Re the large-scale shedding is suppressed but the
shear layer instability remains.
To investigate further the excitation of shear layer instability by external disturbances, the

e�ect of placing a secondary cylinder close to the separated shear layer from half a cylinder
is studied for Re=300. The diameter of the secondary cylinder is one-�fth that of half the
cylinder. Still, the e�ective Re for the smaller cylinder is large enough to result in a von
Karman vortex street. This interacts with the shear layer from the half-cylinder and results in
shear layer instability.
The outline of the rest of the article is as follows. We begin by reviewing the governing

equations for incompressible �uid �ow in Section 2. Section 3 describes the stabilized �nite
element formulation. The problem set-up is described in Section 4, while the computational
results are presented in Section 5. First, to establish con�dence in the computational methods
and the results, comparisons with published data is presented. Later, results that point to the
presence of shear layer instability are shown. We close with some concluding remarks made
in Section 6.

2. THE GOVERNING EQUATIONS

Let � ⊂ Rnsd and (0; T ) be the spatial and temporal domains, respectively, where nsd is the
number of space dimensions, and let � denote the boundary of �. The spatial and temporal
coordinates are denoted by x and t. The Navier–Stokes equations governing incompressible
�uid �ow are

�
(
@u
@t
+ u · ∇u − f

)
− ∇ · � = 0 on � for (0; T ) (1)

∇ · u = 0 on � for (0; T ) (2)

Here �, u, f and � are the density, velocity, body force and the stress tensor, respectively.
The stress tensor is written as the sum of its isotropic and deviatoric parts:

�= − pI+ T; T=2�U(u); U(u)= 1
2((∇u) + (∇u)T) (3)

where p and � are the pressure and coe�cient of dynamic viscosity. These equations are
accompanied with appropriate boundary conditions and an initial condition. The internal as
well as the external boundary of the domain, �, is partioned in �g and �h. In general, the
boundary conditions are either on the velocity �eld (u= g on �g) or on the stress (n · �= h
on �h). For the �ow problem being studied in this paper they are described in more detail in
Section 4.
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1150 S. MITTAL

3. FINITE ELEMENT FORMULATION

The incompressible �ow equations, in the velocity pressure form, are solved via a stabilized
�nite element method. The stabilized formulation is based on the streamline-upwind=Petrov–
Galerkin (SUPG) and pressure-stabilizing=Petrov–Galerkin (PSPG) stabilization techniques.
Several element-level integrals are added to the Galerkin formulation to stabilize the com-
putations against spurious numerical oscillations. The basic Galerkin formulation is unstable
for large Re �ows and does not allow one to use equal-order-interpolation velocity–pressure
elements. The time integration of the governing �ow equations is done via an implicit pro-
cedure that is second-order accurate. The time steps are chosen to adequately resolve the
time-scales in the physical phenomena. The large-scale-coupled nonlinear equation systems
resulting from the �nite element discretization of the governing equations are solved itera-
tively by employing the Generalized Minimal RESidual (GMRES) procedure in conjunction
with diagonal preconditioners.
Consider a �nite element discretization of � into subdomains �e, e=1; 2; : : : ; nel, where nel

is the number of elements. Based on this discretization, for velocity and pressure we de�ne
the �nite element trial function spaces Sh

u and Sh
p , and weighting function spaces V

h
u and Vh

p .
These function spaces are selected, by taking the Dirichlet boundary conditions into account,
as subsets of [H1h(�)]nsd and H1h(�), where H1h(�) is the �nite-dimensional function space
over �. The stabilized �nite element formulation of Equations (1)–(2) is written as follows:
�nd uh ∈Sh

u and ph ∈Sh
p such that ∀wh ∈Vh

u , q
h ∈Vh

p

∫
�
wh · �

(
@uh

@t
+ uh · ∇uh − f

)
d� +

∫
�
U(wh) : �(ph; uh) d� +

∫
�
qh∇ · uh d�

+
nel∑
e=1

∫
�e

1
�
(�SUPG�uh · ∇wh + �PSPG∇qh)

·
[
�

(
@uh

@t
+ uh · ∇uh − f

)
− ∇ · �(ph; uh)

]
d�e

+
nel∑
e=1

∫
�e
�LSIC∇ · wh�∇ · uh d�e=

∫
�h

wh · hh d� (4)

In the variational formulation given by Equation (4), the �rst three terms and the right-
hand side constitute the Galerkin formulation of the problem. The �rst series of element-level
integrals are the SUPG and PSPG stabilization terms added to the variational formulation.
While the SUPG terms stabilize the formulation in the presence of advection operator, the
PSPG terms allow one to use any combination of velocity and pressure interpolation, in-
cluding equal-order interpolation. The second series of element-level integrals are added to
the formulation for numerical stability at high Reynolds numbers. For more details on the
formulation, de�nitions of the various coe�cients related to the stability terms, and the ap-
plication to �ow past cylinders the reader is referred to the article by Mittal and Kumar
[11], Mittal [12], Tezduyar [13] and Tezduyar et al. [14]. The element length, utilized in the
stabilization coe�cients, is equal to the minimum edge length of an element.
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4. THE PROBLEM SET-UP

Consider a circular cylinder, of diameter D, placed in a uniform �ow of speed U . The free-
stream �ow is along the x-axis and the cylinder sits at the origin of the coordinate axes. The
outer boundary of the computational domain is a square box whose edges are each located
at 50D from the cylinder centre. The Reynolds number (Re), based on the diameter of the
cylinder, free-stream velocity and viscosity of the �uid, for this study varies from 50 to 350.

4.1. The �nite element mesh

Figure 1 shows a view of the �nite element mesh employed for most of the computations
in this paper. It consists of 49 800 quadrilateral elements and 50 315 nodes. At each time
step, approximately, 150 000 nonlinear equations are solved via the GMRES technique [15] in
conjunction with diagonal preconditioners. In the region close to the cylinder, there are 200
elements in the circumferential direction. The thickness of the the �rst layer of elements, in
the direction normal to the cylinder, is 0:001D. A time step size of �t=0:0625 is utilized
for all the computations.

4.2. Boundary conditions

Uniform �ow velocity is prescribed at the upstream boundary and no-slip condition on the
velocity is speci�ed on the cylinder wall. At the downstream boundary a Neumann-type
boundary condition for the velocity is speci�ed that corresponds to zero viscous vector. On
the upper and lower boundaries of the domain the �ow is allowed to slip; the component of
velocity normal to and the components of stress vector along these boundaries are prescribed

Figure 1. Flow past a cylinder: a close-up view of the �nite element mesh
with 50 315 nodes and 49 800 elements.
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zero value. For the case with no �ow across the wake centreline, the vertical component of
the velocity at the nodes lying at the wake centreline are assigned a zero value. The �ow
past half-cylinder is computed by imposing symmetry conditions on the velocity at the wake
centreline.

5. RESULTS

5.1. Steady-state solutions

First, steady-state solutions for �ow past a cylinder are presented. These solutions are com-
puted by dropping the unsteady terms from the governing equations. Figure 2 shows the

Figure 2. Steady �ow past a cylinder at various Re: vorticity �eld. Solid lines in-
dicate counter-clockwise vorticity while the broken lines show clockwise vorticity.

The stagnation streamline is shown in thick solid line.
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Table I. Steady �ow past a cylinder.

�CD
Case Re �CD (other studies [16]) Lb=D Cp0 −Cpb
1 50 1.382 — 3.42 1.134 0.457
2 100 1.065 1.060 6.67 1.075 0.388
3 200 0.837 0.833 13.24 1.044 0.288
4 250 0.779 — 16.78 1.038 0.251
5 300 0.734 0.729 20.49 1.034 0.218

Summary of the various �ow parameters for the steady �ow past a cylinder at various
Reynolds numbers: �CD, drag coe�cient; Lb=D, length of recirculation bubble; Cp0, stagna-
tion pressure coe�cient; and −Cpb, base pressure coe�cient.

steady-state vorticity �elds for the �ows at various Re. Also, shown in the same �gure, in
thick lines, are the stagnation streamlines that represent the recirculation region=wake bubble
in the �ow at the corresponding Re. Table I lists the various parameters associated with the
�ows. The �ow pictures and the parameters listed in Table I match very well with the results
presented by Fornberg [16, 17]. For example, the steady-state drag coe�cient from the present
computations for Re=100 �ow is 1.065 and the length of the wake bubble, measured from
the cylinder centre, is 6:67D. These values, reported by Fornberg [16, 17] are 1.06 and 6:85D,
respectively. It is observed that the recirculation bubble length increases with Re.
The magnitude of the �ow speed is shown in Figure 3. Figure 4 shows the velocity pro�le

in the wake of the cylinder at x=D=2:5 and 40 for various Re. The station x=D=2:5 is in
the near wake of the �ow and highlights the velocity pro�le in the regions of separated shear
layer and recirculation zone. x=D=40 shows the velocity pro�le beyond the recirculation
bubble, in the far wake. From these two �gures it can be observed that the thickness of the
shear layer separating from cylinder surface decreases with Re. This suggests that the �ow
at higher Re is more amenable to the instability associated with the shear layer(s). While
the steady-state velocity �eld is symmetric with respect to the centreline, the vorticity �eld is
antisymmetric.
The pressure distribution on the cylinder surface for various Re is shown in Figure 5.

The maximum suction on the cylinder surface reduces with increase in Reynolds number.
The location of the peak suction moves more towards the lee-ward side of the cylinder with
increase in Re. As observed by researchers in the past, the stagnation pressure coe�cient at
low Re is observed to be larger than 1.0.

5.2. Unsteady solutions: no condition on wake centreline

It is well known that the �ow past a cylinder becomes unstable at Re∼ 47 [1, 18]. In this
section, results are presented for the unsteady computations for various Re following an
impulsive start. To establish con�dence in the �nite element formulation, its implementation
and the mesh, the results are compared with those available from other studies. Figure 6 shows
the vorticity �eld for the fully developed unsteady �ow at various Re. The time instant for
which the �ow pictures are shown corresponds to the one at which the cylinder experiences
peak value of lift force. The characteristic von Karman vortex shedding is observed in all
the cases. It is also observed that the longitudinal spacing between the vortices decreases
with increase in Re. This spacing is related to the vortex shedding frequency. Table II shows
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Figure 3. Steady �ow past a cylinder at various Re: magnitude of the velocity �eld.
The stagnation streamline is shown in thick solid line.

the summary of the aerodynamic coe�cients for the �ow. The Strouhal number (St), non-
dimensional vortex shedding frequency, increases with Re.
These results are in good agreement with those from other research e�orts. For example,

for the Re=100 �ow the Strouhal number (based on the dominant frequency in the variation
of the lift coe�cient) from the present computations is 0.1644. Williamson [20] measured
St=0:1648 for parallel shedding. Kravchenko et al. [22] have reported their computed value
to be 0.164. They have used a B-Spline method in conjunction with zonal grids. The com-
putations by Persillon and Braza [23] also result in a Strouhal number of 0.164. The rms
lift coe�cient from the present computations is 0:2256. From the approximate formula sug-
gested by Norberg [24] (CLrms =

√
�=30 + �2=90, �=(Re − 47)=47), the value is 0.2274. The

amplitude of the lift coe�cient from the present computations is 0.319. The value reported by
Kravchenko et al. [22] is 0.314. For the Re=200 �ow, the values for the two-dimensional
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x/D=40x/D=2.5

Figure 4. Steady �ow past a cylinder at various Re: velocity pro�le in the wake at x=D = 2:5 and 40.
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Figure 5. Steady �ow past a cylinder at various Re: variation of the
coe�cient of pressure on cylinder surface.

computations reported by Posdziech and Grundmann [25] are 1.3132 for �CD and 0.1944 for
St. The experimentally measured value for St is 0.196 [21]. Again, the comparison with the
present results is excellent.
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Figure 6. Unsteady �ow past a cylinder at various Re: vorticity �eld for the fully developed un-
steady solution at a time instant corresponding to the peak value of lift coe�cient. Solid lines indicate

counter-clockwise vorticity while the broken lines show clockwise vorticity.

Table II. Unsteady �ow past a cylinder at various Re.

Case Re �CD (CD)rms (CL)rms St St (other studies)

1 50 1.416 7:50× 10−5 0.035 0.1227 0.1222 [19]
2 100 1.322 6:34× 10−3 0.226 0.1644 0.1648 [20]
3 200 1.327 3:09× 10−2 0.489 0.1947 0.196 [21]
4 300 1.357 5:63× 10−2 0.652 0.2077 —

Summary of the aerodynamic coe�cients: �CD is the mean drag coe�cient, (CD)rms and
(CL)rms are the rms values of the drag and lift coe�cients, respectively, and St is the
Strouhal number.

The �ow past a cylinder is known to become three-dimensional beyond Re∼ 180. In such
a situation the two-dimensional computations over-predict the Strouhal number and the mean
drag coe�cient [12, 26]. The three-dimensional computations for the Re=300 �ow with slip
side walls by Mittal [12], using a very similar �nite element formulation as in this work, results
in St=0:203. The present two-dimensional computations, as expected, result in a slightly larger
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Figure 7. Unsteady �ow past a cylinder at various Re: magnitude of the velocity �eld for the fully
developed unsteady solution at a time instant corresponding to the peak value of lift coe�cient.

value of St. Kravchenko et al. [22], from their three-dimensional computations, observed
St=0:203 and �CD=1:28. The corresponding experimental values from Williamson [1] are
0.203 and 1.22.
It is observed from Figures 6 and 7 that for Re¿ 200 the vortices far downstream in

the wake coalesce. The point at which the coalescence begins moves upstream with increase
in Re. For the Re=300 �ow, the far downstream part of the wake exhibits �ow structures
reminiscent of the secondary instability of the wake [27]. An even larger spatial domain would
be required to investigate this instability. This, however, is not the aim of the present study.

5.3. No �ow across the wake centreline

It was shown in one of our earlier studies [7] that a ‘slip’ splitter plate of appropriate length
and placed suitably along the wake centreline can suppress the vortex shedding completely
for Re=100. The plate allows slip of velocity in the x direction but forces the component of
velocity in the y direction to vanish. Our studies show that a slip splitter plate that extends
from the rear stagnation point of the cylinder to far downstream, along the wake centreline,
suppresses all the instabilities for Re6 300 (and perhaps, for larger Re which we have not
investigated). To excite the shear layer instability, we present results for computations where
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the entire wake centreline downstream of the cylinder is forced to be streamline: no �ow
normal to this line is allowed. It is hoped that such an arrangement will weaken=suppress the
vortex shedding mode so that the shear layer instability is exposed.
Computations are carried out for Re=50, 100, 200, 250, 300 and 350 with the initial

conditions corresponding to an impulsive start. It was observed that for Re=250 and below,
no instabilities are observed and the �ow remains steady. However, for the Re=300 �ow,
an interesting instability is observed.
Figure 8 shows the time histories and their power spectra of the vertical component of

velocity at a point located at (10:06D, 0:63D). The data for both the computations, with and
without the no-normal-�ow across the wake centreline, is shown. For the case without any
condition on the wake centreline the time variation associated with the data is due to the
von Karman vortex shedding. The power spectra shows the peak for the vortex shedding
frequency, fK, and its harmonics. For the case with the no-normal-�ow across the wake
centreline, the signal consists of an almost time periodic variation of a very low frequency
along with intermittent oscillations corresponding to fSL and its super harmonics. Here, fSL
denotes the shear layer frequency. We observe that fSL is signi�cantly smaller than fK. Time
histories of the velocity components and their power spectra at points located elsewhere in
the wake, for example at (2D; 1D), show similar behaviour.
Figure 9 shows the vorticity �eld at various instants during one cycle of variation of this

signal. Also shown in the right column of the �gure is the disturbance to the vorticity �eld
with respect to the steady-state solution for the Re=300 �ow. It can be observed, from
the �gure, that the disturbance �rst appears in the far downstream part of the wake (frames
c and d of Figure 9) and than propagates upstream. From this �gure it appears that the
instability begins as a wake instability leading to the vortex shedding. As the disturbance
moves upstream to the recirculation zone near the cylinder, it excites the instability of the
separated shear layer. This instability is qualitatively di�erent from the von Karman vortex
shedding shown in Figure 6. It is intermittent as was also observed by researchers earlier [3, 4]
and its frequency fSL is signi�cantly di�erent from the vortex shedding frequency, fK, that
is observed for the �ow past a cylinder with no constraint along the centreline. Also, the
magnitude of unsteadiness in the shear layer instability is signi�cantly smaller than in the
von Karman vortex shedding. This can be observed from the time histories of the cross-
�ow component of velocity at a point shown in Figure 8. The same observation can also be
made from the comparison between the unsteady component of the drag coe�cient obtained
for the cases with and without the no-normal-�ow condition across the wake centreline as
shown in Figure 10. This suggests that at Re=300 the shear layer instability is much weaker
compared to the primary instability of the wake. In addition, in a real situation the �ow is
contaminated with three-dimensional instabilities. Perhaps, that is why one does not observe
the shear layer instability during most experiments. So far, only the experiments conducted
by Gerrard [3] have reported the presence of shear layer vortices at low Re. The present
computations show that it is possible to excite the shear layer instability even for Re=300.
It can be observed if the other instabilities that are much stronger, for example, the primary
instability are suppressed or weakened.
Our preliminary results from the linear stability analysis also support the results from these

two-dimensional direct numerical simulations. The steady-state solution for Re=250 is found
stable, while that at Re=300 is unstable. The eigenmode corresponding to the rightmost
eigenvalue (with largest real part) appears very similar to the �ow pictures in Figure 9.
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Figure 8. Re=300 �ow past a cylinder with and without the no-�ow condition across the
wake centreline: time histories and their power spectra of the vertical component of velocity
at a point located at (10:06D, 0:63D). The frequency f has been non-dimensionalized using

the diameter of the cylinder and the free-stream speed.
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Figure 9. Re=300 �ow past a cylinder with the no-�ow condition across the wake centreline:
vorticity �eld (left) and its �uctuating part (right) at various instants during one cycle of the
unsteady solution. Also shown is the time history of the vertical component of velocity at a point
(10:06D, 0:63D) with respect to the centre of the cylinder. The stagnation streamline for the
steady solution is shown in a thicker solid line. Solid lines indicate counter-clockwise vorticity

while the broken lines show clockwise vorticity.
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Presently, we are trying to locate the critical Re at which the shear layer instability sets in.
These results will be reported in a later article.
Figure 12 shows the time histories of the vertical component of velocity at a point located at

(10:06D, 0:63D) and their power spectra for Re=350. The results are very similar to those
at Re=300. Prasad and Williamson [4] found that the normalized shear layer frequency
(fSL=fK), equivalent to the non-dimensional shedding frequency of the secondary vortices as
used by Wei and Smith [28], follows the Re0:67 power law. In fact, they [4] plotted not only
their own data but also that from all the previous investigators and found that the Re0:67 power
law gives a much closer �t than the Re0:5 law proposed earlier, from approximate analysis.
In that sense, the Re0:67 power law represents almost all the experimental data that exists. In
the present work, we have results from two sets of Re: Re=300 and 350. We proceed to
check if the present data follows the Re0:67 power law. To this extent, it is found that the
ratio of values of fSL=fK at Re=350 and 300 is 1.106. This is in good agreement with the
value from the power law: ((350=300)0:67 = 1:109).

5.4. Flow past half a cylinder: is the separated shear layer intrinsically unstable?

In light of the instability of the shear layer, observed for Re=300, a question that deserves
attention is whether the separated shear layer in intrinsically unstable or that the shear layer
instability observed in the previous section has been excited by the instability of the wake.
To address this issue �ow past half a cylinder (the upper part) is computed.
The computational domain and the �nite element mesh are exactly one half of the ones

used for the complete cylinder. On the lower boundary of the cylinder, along the cylinder
centreline, the component of velocity normal to it is prescribed a zero value. In addition,
the component of stress vector along this boundary is assigned a zero value. All the other
boundary conditions are same as for the �ow past a full cylinder.
Flow past half a cylinder was computed for Re=100, 200 and 300 following an impul-

sive start. In all the cases, the �ow achieved a steady state. The steady-state lift and drag
coe�cients are listed in Table III. Figure 10 shows the time histories of the drag coe�cient
for the complete and half-cylinder for the Re=300 �ow. In this �gure, the drag coe�-
cient for the half-cylinder, has been multiplied by two to aid comparison with the results
for the full cylinder. The vorticity �eld for the fully developed solution for various Re is
shown in Figure 11. The solutions are virtually identical to the upper half of the solutions
obtained with the steady-state computations for the full cylinder. This computation demon-
strates that the separated shear layer is intrinsically stable for the �ow at Re=300. However,
it can be excited by other disturbances such as the primary wake instability. The computa-
tions provide a possible explanation for the shear layer instability seen by Gerrard [3] for
low Re �ows. As has been reported by other investigators in the past, at a higher Re, the
separated shear layer becomes unstable on its own. Flow past half a cylinder can be stud-
ied to �nd the critical Re for the onset of shear layer instability. This is currently under
investigation.

5.5. Flow past half a cylinder: excitation of the separated shear layer by a secondary
cylinder

Having con�rmed that the �ow past half a cylinder is globally stable at Re=300, we inves-
tigate its receptivity to external excitation. A secondary cylinder of one-�fth the diameter of
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Figure 10. Re=300 �ow past a cylinder with and without the no-�ow condition
across the wake centreline: time histories of the drag coe�cient. Also shown is the

drag coe�cient for the half-cylinder that is multiplied by two.

Table III. Flow past half a cylinder at various Re: value of the drag and
lift coe�cient for the fully developed �ow.

Case Re CD CL

1 100 0.5335 0.5373
2 200 0.4186 0.3794
3 300 0.3671 0.2826

Figure 11. Flow past a half-cylinder at various Re: vorticity �eld for the fully developed solution. Solid
lines indicate counter-clockwise vorticity while the broken lines show clockwise vorticity.

the main cylinder is placed at (−1:0D; 2:5D) with respect to the centre of the half-cylinder.
Based on its diameter and the free-stream speed the Reynolds number for the smaller cylinder
is 60. This is large enough to result in vortex shedding. We investigate the possibility that the
vortex shedding from the smaller cylinder might excite the instability of the separated shear
layer from the half-cylinder. The �nite element mesh consists of 97 474 nodes and 194 056
triangular elements (Figure 12).
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Figure 12. Re=350 �ow past a cylinder with and without the no-�ow condition across the wake
centreline: time histories and their power spectra of the vertical component of velocity at a point
located at (10:06D, 0:63D). The frequency f has been non-dimensionalized using the diameter

of the cylinder and the free-stream speed.
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Figure 13. Re=300 �ow past half a cylinder in the presence of a smaller secondary cylinder
of one-�fth the diameter: time history of the vertical component of velocity at (15D; 2D) and
vorticity �eld at various time instants. Red colour indicates counter-clockwise vorticity while the

blue colour shows clockwise vorticity.

Figure 13 shows the time history of the vertical component of velocity at a point whose
coordinates, with respect to the centre of the half-cylinder, are (15D; 2D). The instanta-
neous vorticity �eld at certain time instants is also shown in the same �gure. As expected,
Karman vortex street is established behind the smaller cylinder. A recirculation bubble forms
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fSL

fK (small cylinder)

Figure 14. Power spectra of the vertical component of velocity at a point in the Re=300 �ow past
a cylinder from two simulations: no-�ow condition across the wake centreline and half-cylinder

wake excited by a smaller secondary cylinder.

in the wake of the half-cylinder and increases in size with time. The growth of the bub-
ble can be observed in frames a–g of Figure 13. As a result of this bubble, the vortex
street from the smaller cylinder is slightly displaced. At t∼ 1750 (frame n of Figure 13),
slight oscillations in the downstream part of the recirculation bubble can be observed. Sub-
sequently, these oscillations grow and result in the shear layer vortices (frames o–q of
Figure 13). This instability resembles the Kelvin Helmholtz instability of the shear layer.
After some time the disturbances are swept o� and the �ow achieves a quiet state. How-
ever, the instability returns at t∼ 2750 and the instability of the separated shear layer is
observed, yet again. As can be seen from the time history of the velocity, shown in the
top row of the same �gure, this instability establishes itself as a periodic, intermittent
phenomenon.
It is seen from Figure 13 that the transition point of shear layer, beyond which it is unstable,

is quite far from the cylinder. This is in line with the observations by Singh and Mittal [29]
who investigated the possible relationship between the drag crisis (sudden loss of drag at
Re∼ 2×105) and the instability of the separated shear layer via two-dimensional simulations.
They observed that as Re is increased the transition point of shear layer, beyond which it is
unstable, moves upstream.
The instability observed in this simulation and the one with a full cylinder with the condition

of the no-normal-�ow across the wake centreline seem very similar: both show a periodic and
intermittent behaviour. Shown in Figure 14 are the frequency spectra of the vertical component
of the velocity from the two simulations. While the result for the simulation with the no-
normal-�ow across the wake centreline is for a probe located at (10:06D; 0:63D), the probe
for the half-cylinder is located at (1:5D; 0:51D). In both the cases, the peak corresponding
to fSL is observed at the same frequency. The power spectra from the velocity recorded by
probes at other locations, for both the simulations, give very similar results. This adds further
con�dence in the present results.
Also observed in the spectrum for the half-cylinder case is a peak corresponding to the

vortex shedding frequency for the smaller secondary cylinder (fK ∼ 0:638). Based on the di-
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ameter of the smaller cylinder, this value of fK corresponds to St=fK=5∼ 0:128 which seems
quite reasonable for Re=60 �ow past a cylinder (please see Table II). At higher Re, the
frequency of the formation of shear layer vortices is higher than the primary vortex shed-
ding frequency [29]. It is seen here, that for low Re, fSL is signi�cantly smaller than the
primary vortex shedding frequency. These simulations establish that even though the sepa-
rated shear layer from the cylinder is intrinsically stable at Re=300, it can be excited via
external disturbance(s). This points to the shear layer being convectively unstable as opposed
to the wake which is absolutely unstable. More work, to address this aspect, is currently in
progress.

6. CONCLUDING REMARKS

A stabilized �nite element method has been utilized to compute �ow past a cylinder, in
two dimensions, at low Reynolds numbers (506Re6 350). Steady and unsteady �ows past
a circular cylinder have been computed and compared with the available experimental and
computational results in the literature. Good agreement has been observed. It is observed that
for Re¿ 200 the vortices far downstream in the wake coalesce. At Re=300, downstream of
the coalescence, an interesting vortex structure, resembling the secondary vortex shedding, is
observed. This warrants further investigation with a larger computational domain.
A numerical experiment has been conducted wherein the wake centreline is forced to be a

streamline. The initial conditions correspond to an impulsive start. Forcing the no-normal-�ow
across the centreline suppresses the primary instability of the wake, that is responsible for
the von Karman vortex shedding, for Re¡250. At Re=300, instability in the �ow sets in.
Along with the wake instability, shear layer instability is observed for the Re=300 �ow.
The �uctuations due to the instability are intermittent in nature and much weaker than those
for the von Karman vortex shedding for �ow past a cylinder without the imposition of the
no-normal-�ow across the wake centreline. The observation of shear layer instability at such a
low Re has been made possible by the weakening of the, more dominating, primary instability
of the wake. Similar instability is observed for the Re=350 �ow, as well. It is found that
the normalized shear layer frequency scales with the Re0:67 power law, even at these low Re.
Computations have also been carried out for �ow past half a cylinder with symmetry

boundary conditions on the velocity �eld at the centreline. This numerical experiment is useful
in assessing the stability of an isolated shear layer as opposed to the pair of shear layers that
exist in the full cylinder. It is found that that the Re=300 �ow past half a cylinder is stable.
However, when a secondary cylinder of one-�fth the diameter of the half-cylinder is placed
close to it, the vortex shedding from the smaller cylinder excites the instability of the separated
shear layer of the half-cylinder. The shear layer frequency from this simulation matches the one
for full cylinder with no �ow across the wake centreline. The present investigation suggests
that although the shear layer at Re=300 is intrinsically stable, it is possible to excite it by
some other disturbances.
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